Downtown Street Lighting and Event Power Recommendations

The following recommendations are based on the previously completed review of the existing street lighting and event power infrastructure in downtown Brantford.

Street Lighting

Improvements to Under-lit Sections:
The following areas require an increase in their light levels to meet the design recommendations in ANSI/IESNA RP-08-21. This work should incorporate all adjacent acceptably lit zones to ensure they remain lit to the level indicated in the standard.

- Wellington Street between West and King including all adjoining intersections
- The intersection of Darling and Clarence
- The intersection of Darling and Charlotte
- The intersection of Nelson and Charlotte
- The intersection of Darling and King

Lighting in Areas of Street Upgrades:
The location and style of lights in areas where the streetscape is to be upgraded are to be reviewed and either relocated or replaced. All work is to maintain the existing light levels and the requirements in ANSI/IESNA RP-08-21. The style of the light fixtures is to be selected in consultation with City staff. Design is to incorporate lights, light poles, and power infrastructure. All power infrastructure modifications to be coordinated with Grandbridge Energy.

Fixture Type Simplification:
There is a wide variety of existing street lighting in the study area. Several types are in various stages of active replacement. Many existing older fixtures will be impacted by street upgrades and will not be available for replacement due to their age. The next stage of design should work with city staff to identify which fixture types will be impacted or replaced by street upgrades throughout the downtown to reduce the overall variety of types for ease of maintenance.

Event Power

Event power requirements and existing infrastructure should be reviewed with City of Brantford events staff. Existing infrastructure in area of work is to be rebuilt to suit street upgrades and changing event needs. Additional infrastructure and rough-in for future infrastructure will be required in the area of work based on discussions with City staff.

Downtown Street Lighting Review

Vince,
We have completed a survey of the existing lighting in the study area for the City of Brantford. This consisted of a combination of visual inspections and information from both the City and manufacturers. Of note, Grandbridge Energy did not provide any details on the fixtures despite requests. The fixture types are listed in the attached drawing package on sheet SL. 15 . Furthermore, this information is current as of January 2023. Lighting replacements occurred during the time of our study and as such, previous drawings indicating light levels should be disregarded as they no longer reflect the current lighting installation. Any further changes since January 2023 are not reflected in this report.

Based on our survey we have modelled the existing lighting levels for each section of road and intersection. We have compared these to the lighting level recommendations in ANSI/IESNA RP-08-21. Both the recommended levels and the modelled levels are summarized on our drawing SL.14. We have also added our assessment to each roadway and intersection about whether it is under lit, over-lit, or acceptably close to the standard. Below is an expanded commentary on the charts found in drawing SL. 14.

Intersections:
The largest group is the over-lit category which may be acceptable to the City as in some cases it is reasonable to light an intersection brighter than recommended. All the intersections that were over-lit had a good uniformity ratio which is key for visibility. We would not recommend changing any of these intersections to be less bright in order to meet the recommended values.

The next largest group is the acceptable group. No changes would be proposed for these intersections.

The smallest group is the under-lit intersections. Typically, there is not a good reason to under light intersections so we would propose fixing them all.

- Darling/Clarence-This intersection needs more light, ideally from an additional light fixture. Replacing one of the existing lights in the area with a brighter head may work as well.
- Darling/Charlotte-This intersection needs more light, ideally from an additional light fixture. Replacing one of the existing lights in the area with a brighter head may work as well.
- Nelson/Charlotte-This intersection needs more light, ideally from replacing an existing older fixture (type TT).

- Darling/King- This intersection needs more light, ideally from an additional light fixture on the north-east corner. Replacing one of the existing older fixtures on Darling would help but likely not be enough to reach an acceptable level.
- Wellington/King- This intersection needs much more light, ideally from two additional light fixtures on the north and west portions. Replacing one of the existing older fixtures on Wellington would help but likely not enough to reach an acceptable level.
- West/Brant- This intersection needs more light, ideally from one or two additional light fixtures on West.
- West/Wellington- This intersection needs more light, ideally from two additional light fixtures on the north and east portions. This also factors into West/Albion.
- West/Albion- This intersection needs more light, ideally from two additional light fixtures on the south and east portions. This also factors into West/Wellington.

Road Sections:

The largest group is the over-lit category which may be acceptable to the City as in some cases it is reasonable to light a road brighter than recommended. All of the road sections that were over-lit had a good uniformity ratio which is key for visibility. We would not recommend changing any of these intersections to be less bright in order to meet the recommended values.

The next largest group is the acceptable group. No changes would be proposed for these road sections.

The smallest group is the under-lit road sections. Typically, there is not a good reason to under light road sections so we would propose fixing them all.

- Wellington Street between West and Bridge- This road section has no lights currently. Fixing this section of roadway would involve adding in one or two lights and should be designed with the above improvements to the nearby under-lit intersections.

In general, the lighting levels are reasonably close to or brighter than standard with the exception of the 10-13 lights proposed above. It will be important to ensure the light levels are maintained in the acceptable portions when other work is done to the street and when older fixtures types are upgraded to LED fixtures.

3.) KEY N.S.

MEGINEERING

BRANTFORD STREETSCAPING

STREETLGHTING

 Sent max 2022 SL. 1


```
-sumer nee

(3I5) Street lighting calculations




```

*)
*cy+4+4y+4
Svuncer AREA
(3,2)

```

MIGITUN

Brantford streetscaping

STREETLIGHTING



\section*{MIGITON}


MIGIVTCN
 brantford streetscaping

Streetughting
Amem:
 \begin{tabular}{l|l|}
\hline Sale \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{(2.). KEY M.T. PLAN} & \multicolumn{2}{|l|}{\begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline No & REVISION \\
\hline
\end{tabular} \\
MIGITUN ENGINEERING \\
 \\

\end{tabular}} \\
\hline &  & ETSCAPING \\
\hline &  & \[
\text { SLL. } 13
\] \\
\hline
\end{tabular}


Notes
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} & & \({ }^{\text {Papasisfataow }}\) & \(\left.\right|_{\text {Peossinan }} ^{\text {Cussication }}\) &  &  &  \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{(later}} \\
\hline & & &  &  & \({ }_{0}^{0.6}\) & \({ }_{\text {c, }}^{3.5}\) \\
\hline \multirow[t]{2}{*}{ILLUMINANCE METHOD-LESS THAN 100 m -CURVED ROAD ROAD, BRANTFORD, ONTARIO} & & & & & Foorcanole & \\
\hline & \(\stackrel{\square}{\circ}\) & \({ }_{\text {coulcer }}^{\text {coser }}\) &  &  & 0.9 & \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
MEASUREMENT ILLUMINATION FOR INTERSECTIONS BASED ON \\
- ILLUMINANCE METHOD
\end{tabular}} \\
\hline  & E & Loca/ 10004 & MEOUW Petessrav contcr &  & \({ }_{\text {Foorcanole }}^{1.3}\) & \\
\hline & \% & Colecor 1 OLA &  &  & \({ }^{\frac{1.5}{1.7}}\) & \\
\hline
\end{tabular}

MIGITTUN
ENGINERING

隹

LIGHTING statistics


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{6}{|c|}{LUMINAIRE SCHEDULE} \\
\hline & Tpe \({ }^{\text {munuticiner }}\) & moocl & cataoue numers &  &  & nots \\
\hline  &  & \({ }^{\text {ERR1 }}\) &  &  &  &  M12w \\
\hline \({ }^{88}\) & ¢ELutive & ERL1 &  &  &  &  \\
\hline 9 & gek ichinc & ERL1 &  &  &  &  \\
\hline \[
8
\] &  & ERL1 &  &  &  &  \\
\hline \(\infty\) & ¢E. & ERL1 &  &  &  &  \\
\hline (7) \({ }^{06}\) & ¢Es. & ERL1 &  &  &  &  \\
\hline \[
\theta
\] & (emeran & \({ }^{125}\) &  &  &  & \begin{tabular}{l}
 \\
prob
\end{tabular} \\
\hline  &  & \({ }^{125}\) &  &  &  & \begin{tabular}{l}
Lick \\

\end{tabular} \\
\hline - &  & 115 &  &  &  &  \\
\hline 0 &  & 115 &  &  &  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline -1. \({ }^{4}\) & KNNGMNE & K118 &  &  &  &  \\
\hline "m & M KNMNARE & \({ }^{\text {K118 }}\) &  &  &  &  \\
\hline NN &  & K124R &  &  &  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & HOLOPम拞 & Pucl2 &  &  &  &  \\
\hline  & 20 HOLOPANE & PTEE 3 &  &  &  &  \\
\hline \(\overbrace{}^{\text {RR }}\) & HOOPRANE & PTE3 & Prine 2 Oisraution &  & cicis &  ASSUMED WATTAGE \\
\hline \(17{ }^{\text {ss }}\) &  & \({ }^{247}\) &  &  &  &  \\
\hline \(\square^{1}\) &  & Hps & (tap &  &  & \begin{tabular}{l}
Rodinn \\

\end{tabular} \\
\hline \(\pm\) & \(\underbrace{\text { EfLutimuc }}\) & ERL1 &  &  & cimem &  Maw \\
\hline wv &  & ERL1 &  &  &  &  \\
\hline & \({ }^{\text {SELUHOHNS }}\) & RR1 &  &  &  &  \\
\hline
\end{tabular}
```

